机器学习(2022 秋,80250993)
2022-09-24
Chapter 1 前言
本系列讲义为 Jim 根据自己的理解,对于清华大学自动化系教授、ISCB Fellow、生命学院和医学院兼职教授、R 语言DEGseq
库作者张学工老师于 2022 年秋季开设的《Machine Learning》课程讲义进行的重新诠释。
1.1 课程大纲
Week | Date | Course content |
---|---|---|
1 | 09/15 | Introdution, Pattern Classifiers and Their Assessment |
2 | 09/22 | Linear Learning Machines (Linear Classifiers, Linear Regression, MSE/ADALINE, Logistic Regression, Fisher’s Linear Discriminant, Perceptron) |
1.2 课程参考书
- 张学工、汪小我,《模式识别(第四版):模式识别与机器学习》,清华大学出版社,2021.8.
- R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification (2nd edition), John Wiley & Sons, Inc, 2001.
- S. Raschka & V. Mirjalili, Python Machine Learning (2nd edition), Birmingham, Packt Publishing, 2017.
- Y. S. Abu-Mostafa, M. Magdon-Ismail, H-T. Lin, Learning from Data, AMLbook.com, 2012.
- Christopher M. Bishop, Pattern Recognition and Machine Learning, New York, Springer, 2006.
- T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning (2nd edition), New York, Springer, 2016.
- S. Shalev-Shwartz & S. Ben-David, Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press, 2014.
- I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.